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Abstract

In industrial hygiene, a worker’s exposure to chemical, physical, and biological agents is 

increasingly being modeled using deterministic physical models that study exposures near and 

farther away from a contaminant source. However, predicting exposure in the workplace is 

challenging and simply regressing on a physical model may prove ineffective due to biases and 

extraneous variability. A further complication is that data from the workplace are usually 

misaligned. This means that not all timepoints measure concentrations near and far from the 

source. We recognize these challenges and outline a flexible Bayesian hierarchical framework to 

synthesize the physical model with the field data. We reckon that the physical model, by itself, is 

inadequate for enhanced inferential and predictive performance and deploy (multivariate) 

Gaussian processes to capture uncertainties and associations. We propose rich covariance 

structures for multiple outcomes using latent stochastic processes. This article has supplementary 

material available online.
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1. INTRODUCTION

A key concern of industrial hygiene is the estimation of a worker’s exposure to chemical, 

physical, and biological agents. One goal of exposure modeling is to represent the physical 

processes generating chemical concentrations in the workplace. Physical models in 

industrial hygiene include a source (for contaminant generation) and allow for the transport 

and fate of the contaminant over time to predict concentrations (Nicas 1996; Nicas and 

Jayjock 2002). A common setting assumes different physical behavior for the concentrations
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—one close to the contaminant source (“near field”) and another farther away (“far field”). 

The resulting physical model is known as a two-zone model and is described by ordinary 

differential equations (ODEs) that model the rate of change in concentrations using some 

physical parameters (Ramachandran 2005). These parameters (“inputs”), in theory, 

determine when the system attains steady state. A purely conceptual approach would assign 

“plausible” values to these inputs, usually assuming steady-state concentrations (e.g., Keil et 

al. 2009). An accurate representation will deliver better concentration estimates and facilitate 

subsequent exposure management. This, however, is challenging because the workplace is 

notoriously complex and deterministic physical models are unlikely to provide an adequate 

representation. It is, therefore, becoming increasingly clear that a synergy of physical and 

statistical models is needed to better estimate the processes in the workplace.

Inference is improved by using observations from the workplace. Concentration is typically 

measured over a finite set of timepoints. The two-zone setting produces bivariate 

concentration measurements—one from the “near field” and another from the “far field.” 

Typically, however, there are discrepancies between the observations and the deterministic 

physical model since the physical model assumptions are violated in real workplace 

environments. A plausible choice for inputs to the two-zone model could, perhaps, be 

obtained by training them using trial-and-error until satisfactory agreement between the 

output and concentration measurements is achieved. That approach, however, is unattractive. 

Not only can finding satisfactory agreement between the observations and the physical 

model’s output be difficult, even if they agree the approach fails to account for the 

uncertainty in estimation and prediction. Model assessment would be completely ad hoc as 

well. A more principled approach estimates the physical model’s unknown inputs from the 

concentration measurements by making use of prior information on the input parameters. 

Usually, some prior information regarding the inputs to the physical model is available based 

upon physical considerations implied by the model or from experts with experience in 

workplace environments. A Bayesian modeling framework that allows synthesis of 

information from different sources is, therefore, attractive.

Synthesizing deterministic physical models with statistical models to achieve improved 

inference continues to garner attention. One approach, Bayesian melding (e.g., Raftery, 

Givens, and Zeh 1995; Poole and Raftery 2000; Fuentes and Raftery 2005; Ševčíková, 

Raftery, and Waddell 2007, 2011), achieves such synthesis by incorporating prior 

information on the inputs to the physical model, estimates them using their posterior 

distributions, and carries out subsequent predictive inference. In its simplest form, Bayesian 

melding proceeds from a hierarchical model that regresses on the physical model. See, for 

example, Zhang et al. (2009) and Raftery and Bao (2010) for two very different applications 

of this approach. We demonstrate, however, that straightforward Bayesian nonlinear 

regression can be highly ineffective in predicting exposure concentrations in industrial 

workplaces.

Stochastic processes are deployed to reckon with variability not accounted for by the 

physical model. Fuentes and Raftery (2005) and Berrocal, Gelfand, and Holland (2011) 

recently applied spatial processes to meld information from monitoring sites with output 

from numerical models. They focused largely upon spatial interpolation and predictions 
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using independent runs of the numerical model. Assessing uncertainty in model inputs was 

precluded by the complexity of the physical models therein. In different applications, 

Ševčíková, Raftery, and Waddell (2007, 2011) proposed Bayesian melding with single-

outcome land use and transportation models. There is also related literature in the domain of 

“computer models” (e.g., Kennedy and O’Hagan 2001; Santner, Williams, and Notz 2003; 

Bayarri et al. 2007). Here, the computer model is usually highly complex and 

computationally onerous to evaluate. Hence, a Gaussian process is used as a stochastic 

emulator or interpolator to approximate model outputs. We, on the other hand, are able to 

work with the exact mathematical model, which is cheap to evaluate, and focus upon 

flexibly modeling the discrepancies between the mathematical model and the physical 

output.

Apart from addressing a new domain of application and the theoretical implications therein, 

we specifically focus upon two pertinent statistical issues. First, we deal with associated 

bivariate outcomes that are not only related by the physical model, but are also likely to 

produce correlated residuals. We recognize that even when the physical model is easily 

tractable, either analytically or computationally, it is unable to account for extraneous 

variability in the workplace. This occurs almost invariably in industrial hygiene experiments

—the physical model provides information on the overall trend but is too inflexible to 

capture variation at smaller scales, thereby impairing predictive performance. Second, the 

data from industrial workplaces are, more often than not, misaligned. This means that 

concentration measurements from two different outcomes may not always have been 

observed at the same timepoint. More precisely, we can imagine three sets of timepoints—

one has observations from both the near and far fields, another has measurements from the 

near field only, and the third includes measurements from the far field only. Alternative 

terminology might refer to this setting as one of “missing data.” In our context, such 

missingness is assumed completely at random. Interest focuses upon estimating and 

predicting the joint distribution of the concentrations in the two fields at any arbitrary 

timepoint.

Statistical modeling for temporal processes can proceed either by treating time as “discrete” 

or as “continuous” depending upon whether inference (e.g., prediction or interpolation) is 

sought at the same temporal resolution (e.g., “minutes” and “hours”) at which the 

concentrations have been observed or whether it is sought at arbitrary resolutions. Here, we 

treat the concentrations as smooth functions of time and offer inference at arbitrary temporal 

resolutions. In this regard, our approach is arguably richer and especially attractive for 

handling temporal misalignment. Our key modeling ingredient is a multivariate Gaussian 

process. Apart from modeling the usual residual variability, our framework achieves the 

following analytical objectives: (i) approximate the trend (or bias) missed by the physical 

model for concentrations in both fields, (ii) capture correlations across time (with process 

realizations acting as time-varying random effects), and (iii) model the correlations among 

the outcomes when we have multiple outcomes. These objectives resemble those in the 

“calibration” of multi-output computer models, where Gaussian processes emulators for the 

physical model are used to estimate the inputs (see, e.g., Conti and O’Hagan 2010). Our 

contribution here is to offer a richer class of multivariate Gaussian processes to model the 

discrepancies between the physical model and the observed data.
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The remainder of the article evolves as follows. In Section 2, we briefly describe the two-

zone occupational exposure model. Section 3 introduces the misaligned experimental data 

we subsequently analyze. Section 4 presents our process-based Bayesian melding (PBBM) 

approach. In Section 5, we describe a fairly elaborate simulation study followed by an 

analysis of our workplace data. Finally, Section 6 concludes the article by presenting some 

discussion with an eye toward future work.

2. TWO-ZONE MODEL

The two-zone (or two-component) model assumes the presence of a contamination source in 

the workplace and that the region is composed of two well-mixed zones or fields. The zone 

very near and around the source is called the near field, while the rest of the room is called 

the far field. The far field completely encloses the near field and there is some amount of air 

exchange between them. Following convention, we assume that two distinct places that are 

in the same field have equal exposure concentration levels. Also, we assume that the 

contaminant’s total mass is emitted at a constant rate G and that there is an airflow rate 

between the near field and far field equal to β. The final assumption considers that there are 

supply and exhaust flow rates that are taken to be the same and equal to Q. Figure 1 is a 

schematic depiction of the dynamics of the system, where VN and VF denote the volumes at 

the near and far field, respectively.

In this context, the hygienist models the exposure concentrations at the near and far fields 

based upon observations collected over a period of time. Figure 1, along with the 

assumptions, yields the following two-component model:

d
dtc(θ1; x, t) = W(θ1; x)c(θ1; x, t) + g(θ1; x), (1)

where

c(θ1; x, t) =
cN(θ1; x, t)
cF(θ1; x, t) ,

W(θ1; x) =
− β

V N
β

V N
β

V F
− (β + Q)

V F

, g(θ1; x) =
G

V N
0

,

θ1 = {β, Q, G}, and x = {V N, V F} .

The functions cN (θ1; x, t) and cF (θ1; x, t) are the exposure concentrations at time t in the 

near and far fields, respectively.

The solution of (1) depends upon the eigenvalues of W(θ1; x). When the eigenvalues are real 

and distinct, we obtain the following solution for (1):

c(θ1; x, t) = exp(tW(θ1; x))c(θ1; x, 0) + W−1(θ1; x)
× [exp(tW(θ1; x)) − I2]g(θ1; x),

(2)
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where exp (tW (θ1; x)) is the matrix exponential (see supplementary material “ODE.pdf”). 

Assuming that cN (θ1; x, 0) = cF (θ1; x, 0) = 0, Equation (2) can be simplified to produce the 

following unique solution:

cN (θ1; x, t)

= G
Q + G

β + G βQ + λ2V N(β + Q)
βQV N(λ1 − λ2) eλ1t

−G βQ + λ1V N(β + Q)
βQV N(λ1 − λ2) eλ2t,

cF (θ1; x, t)

= G
Q + G λ1V N + β

β
βQ + λ2V N(β + Q)

βQV N(λ1 − λ2) eλ1t

−G λ2V N + β
β

βQ + λ1V N(β + Q)
βQV N(λ1 − λ2) eλ2t,

(3)

where λ1 and λ2 are the eigenvalues of W (θ1; x). These are available in closed form and 

are real and distinct whenever β, Q, VF, and VN are all strictly positive (see supplementary 

material “ODE.pdf”). The latter two quantities are volumes of a chamber and are, hence, 

positive. Physical considerations ensure that the same is true for β and Q. Assigning priors 

with positive support ensures a stable system with real solutions.

The exponential terms in (3) decay asymptotically to zero at large values of t. Consequently, 

the steady-state solutions for the near and far fields are G/Q + G/β and G/Q, respectively. 

Therefore, the model predicts a greater exposure intensity near the emission source 

compared to the one-compartment model in steady-state conditions. Moreover, when β is 

less than or equal to Q, the steady-state concentration in the far field is less than twice the 

steady-state concentration in the near field. In general, Q increases relative to β as the room 

size increases. Thus, the model draws a distinction between exposures of workers near the 

source and those farther away from the source.

3. EXPERIMENTAL TWO-ZONE DATA

The experimental two-zone data that we analyze here is a part of a database compiled from a 

series of designed experiments that were conducted in the industrial hygiene laboratories at 

the University of Minnesota. The data consist of exposure concentrations of toluene over a 

period of time, where Q and G were known to be 13.8 m3/min and 351.5 mg/min, 

respectively. Measurements at 10 cm and 15 cm from the contamination source represent the 

exposure concentrations in the near and far fields, respectively. The near field is defined to 

be a 10 cm high cylinder with a radius of 10 cm around the generation source. Consequently, 

VN = π × 10−3 m3. The zone beyond the near field is the far field, which has VF = 3.8 m3.

A salient feature of this data, and what is not atypical in industrial hygiene, is that 

measurements at several timepoints are available in only one of the fields, but not 

simultaneously from both. Given limited resources and other logistics pertaining to setting 

up the experiment, observations are initially available only from the near field. As the 

experiment proceeds, we obtain measurements from both the fields. Since taking 
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simultaneous measurements from both fields may be logistically difficult, toward the end of 

the experiment only the far field is measured to make up for the initial loss of information 

there.

Figure 2 presents this two-zone experimental dataset. It is divided into three “time zones.” In 

zone I, only the near field provides measurements (83 timepoints), zone II measures both 

fields (134 timepoints) and, finally, zone III measures only the far field (160 timepoints) to 

produce 83 + 160 + 2 × 134 = 511 measurements. Such data are often referred to as 

temporally misaligned because of the “gaps” at the beginning and the end. It is not necessary 

that the data be misaligned in a pattern such as in Figure 2. Depending upon the 

experimental scenario, the missingness can occur completely at random and the resulting 

observations are not required to be divided into such temporal zones. Our approach applies 

to any type of temporal misalignment. To avoid complications arising from temporal 

misalignment, Zhang et al. (2009) analyzed two-zone data using straightforward nonlinear 

regression restricting themselves to timepoints that yielded measurements in both fields. 

This incurs loss of information because the partial measurements from either field still carry 

information on the physical parameters.

A brief exploratory analysis of the data reveals why relying upon the physical model alone 

for inference and scientific deductions is undesirable. Under the assumption of zero initial 

concentration, the theoretical implication of the two-zone model is that the concentration in 

the far field attains steady state after about 351.5/13.8 ≈ 25 mg/m3. Even a cursory glance at 

Figure 2 shows that the data suggest a much higher steady-state concentration—perhaps 

around 250 mg/m3. Least-square analysis and other methods that purely rely upon regressing 

on the physical model (e.g., Zhang et al. 2009) are also likely to produce grossly biased 

inference and poor predictions. For instance, the horizontal dashed line in Figure 2 shows 

the steady-state solution at the near field using a least-square estimate for β. What is 

required is a stochastic mechanism to capture extraneous variation in the data. Instead of 

parametric specifications, a richer and more flexible option is to introduce an unknown 
function of time that can be estimated at arbitrary timepoints. Within a Bayesian setting, one 

needs a prior on this random function, which is provided by a stochastic process over time. 

We elucidate in subsequent sections.

4. BAYESIAN HIERARCHICAL MODELING

We elucidate our approach using a generic setup that considers the following distinct 

modeling ingredients: (a) an m × 1 vector of measurements y(t) = [y1(t), …, ym(t)]T taken at 

timepoint t, (b) inputs (parameters), denoted as θ1, in the physical model that are unknown, 

and (c) variables x that act as experimental controls and are known. For instance, in the two-

zone model θ1 = {β, Q, G}, x = {VN, VF}, and m = 2.

Following recent research (see, e.g., Kennedy and O’Hagan 2001; Bayarri et al. 2007), it is 

beneficial to represent the physical model as a biased representation of “reality” resulting in 

discrepancies between the data and the deterministic physical model. We attribute this 

discrepancy to two terms: “model bias” and “measurement error.” The former results from 

violations of physical assumptions in the actual workplace, while the latter arises from 
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instrumentation error and other unexplained randomness. A stochastic process to capture 

this bias is likely to yield better model fit and estimation of underlying variability. It is 

difficult to pin down the “physical source,” or “sources,” behind these discrepancies. We do 

not, therefore, attempt to attach a physical meaning to this process. We model y(t) as the 

sum of three components: (a) a systemic component represented by the physical model; (b) a 

stochastic process to complement the physical model; and (c) a stochastic measurement 

error process. We write

yi(t) = fi(θ1; x, t) + ηi(t) + ϵi(t), i = 1, 2, …, m

y(t) = f(θ1; x, t) + η(t) + ϵ(t),
(4)

where fi(θ1; x, t) is the physical model, possibly transformed to a scale commensurate with 

yi(t), ηi(t)’s are stochastic processes that capture the bias (extraneous variability), and ϵi (t)’s 

are white-noise processes capturing variation attributable to measurement error and other 

sources of micro-scale discrepancies. Equation (4) also shows the corresponding vector 

representation, where f(θ1; x, t), η(t), and ϵ(t) are m × 1 vectors whose ith elements are 

given by fi(θ1; x, t), ηi (t), and ϵi (t), respectively. Our approach does not require f(θ1; x, t) 
be available in closed form, but only that it be computable for any choice of inputs {θ1, x, t}.

4.1 Multivariate Process Models

The critical element in (4) is η(t). We could assume an autoregressive structure (or Kalman 

filter) treating η(t) as discrete, but that precludes estimation of concentrations smoothly at 

arbitrary timepoints and is inconvenient for handling temporal misalignment. An arguably 

richer option is to treat η(t) as an unknown continuous function of time with a Gaussian 

process prior (see, e.g., Conti and O’Hagan 2010). Assume that we observe y(t) at n 
different timepoints t = {t1, …, tn} and that η(t) ~ GPm (0m, Cη(θ2; ·, ·)) denotes a zero-

centered m × 1 multivariate Gaussian process with m × m cross-covariance matrix Cη(θ2; t, t
′), whose (i, j)th element is the covariance between ηi (t) and ηj (t′) for i, j = {1, …, m}, and 

θ2 is a collection of unknown parameters therein. The Gaussian process implies that η = 

[ηT(t1), …, ηT(tn)]T is distributed as an mn × 1 multivariate normal distribution: η ∣ ∑ηθ2; t) 
~ Nmn(0mn, ∑η(θ2; t)), where ∑η(θ2; t) is the mn × mn block matrix whose (k, l)th block is 

Cη(θ2; tk, tl).

Clearly, care is needed when choosing Cη(θ2; ·, ·) so that ∑η(θ2; t) is symmetric and positive 

definite. To ensure this in a flexible and computationally feasible manner, we adopt a 

constructive approach that assumes that, (t) arises as a linear transformation of a latent p × 1 

multivariate process whose components are independent of each other, where 1 ≤ p ≤ m. 

This idea is adopted in the so-called “linear model of coregionalization” in spatial statistics 

(e.g., Banerjee, Carlin, and Gelfand 2004) but has not, to the best of our knowledge, been 

used in Bayesian melding applications. To be precise, we assume η(t) = Aw(t), where A is 

an m × p matrix with unknown entries, and w(t) ~ GPp(0p, Cw(·, ·;φ)), where w(t) = [w1(t),
…wp(t)]T is the p × 1 multivariate latent process and φ is a collection of unknown 

parameters therein.
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Now, assume w(t) has unit variance, that is, var{w(t)} = Ip. Accordingly, Cw(φ; t, t′) = 

cov{w(t), w(t′) ∣ φ} is a diagonal matrix with ρi(φi; t, t′) as the ith diagonal element, where 

ρi(φi; t, t′) is the correlation between wi(t) and wi(t’) for all i = {1,…,p}, and φ = {φ1,…, 

φp}. Regardless of how close t and t′ are, we assume that there is no correlation between 

wi(t) and wj(t′), when i ≠ j. However, recall that the random process that impacts y(t) is 

actually η(t), which has the cross-covariance matrix Cη(θ2; t,t′) = cov{η(t), η(t′) ∣ θ2} = 

ACw(φ; t, t′)AT, where θ2 = {A, φ}. If p< m, then η(t) is a degenerate Gaussian process 

(i.e., the covariance matrix for any finite realization is singular) but (4) is still a legitimate 

model for y(t) because of the white noise ϵ(t).

If A is square (i.e., p = m) and nondiagonal, then Cη(θ2; t, t′) will not be diagonal, which 

means in this case the model considers correlation between ηi(t) and ηj(t′), even for i ≠ j. 
Furthermore, when t = t′ we have Cη(θ2; t, t) = AAT, which means that we can, without loss 

of generality, set A to be lower triangular to identify with the Cholesky factor of Cη(θ2; t, t). 
This, however, is not strictly required and any square root (e.g., from a spectral or singular 

value decomposition) will yield a valid cross-covariance matrix for η(t). In fact, we obtain η 
∣ ∑η(θ2; t) ~ Nmn(0mn, Ση(θ2; t)), where ∑η(θ2; t) = (In ⊗ A)∑w(φ; t)(In ⊗ AT) is 

guaranteed to be symmetric and positive definite as long as A is nonsingular. Here, ∑w(φ; t) 
denotes the covariance matrix of w, and ⊗ represents the Kronecker product.

It remains, then, to choose ρ1(φ1; ·, ·),…, ρp(φp; ·, ·). These will control the smoothness of 

the underlying process. Had the process been an emulator for the physical model, as is often 

the case for complex computer models (e.g., Bayarri et al. 2007), we would require the 

process to be smoother. A common choice is the Gaussian correlation function, ρi(φi; t, t′) = 

e−φi∣t–t′∣2. We, however, use the process to model time-varying random effects representing 

unaccounted structured extraneous variation in the data. Excessive smoothness will lead to 

poorer fits and is not desirable. For flexibly modeling smoothness as well as strength of 

association, we opt for the Matern correlation function

ρ(ϕ, ν; t, t′) = 1
2ν − 1Γ(ν)

∣ t − t′ ∣
ϕ

ν
Kν

∣ t − t′ ∣
ϕ ;

ϕ > 0, ν > 0,
(5)

where Γ(·) is the usual gamma function while Kν is a modified Bessel function of the second 

kind. The process is ⌈ν – 1⌉ times mean square differentiable, while ϕ determines how 

quickly the correlation decays over time. In particular, the correlation decays more slowly as 

ϕ increases (Stein 1999). We assume that ρi(φi; ·, ·)’s are Matérn functions with distinct 

parameters. Specifically, let φi = ϕi, νi} be the Matérn parameters in ρi (φi; ·, ·), i = 1,…,p. 

Consequently, θ2 = {A, ϕ1,…, ϕp, ν1,…, vp}. Several simpler choices emerge as special 

cases, most notably the exponential ρ(ϕ; t, t′) = e−ϕ∣t–t′∣, which results by fixing ν = 1/2. It is 

worth pointing out that (5), in its full generality, hardly makes a substantive difference in our 

setting and it is likely that a much simpler distance-based correlation function will suffice 

for most practical purposes. Nevertheless, we have used (5) for our subsequent analysis as it 

does not substantially increase the computational burden in our current application.
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Turning to the measurement error process at any time-point t, we assume 

ϵ(t) ∣ Σϵ(θ3) ∼iid Nm(0m, Σϵ(θ3)). Typically θ3 is the collection of the m(m + 1)/2 distinct entries 

in ∑ϵ(θ3), where var{ϵj(t)} = τj denotes the jth diagonal entry and cov{ϵi(t), ϵj(t)} = τij is the 

(i, j)th entry, for i, j = 1,…,m and i < j.

For n timepoints in t, the y(ti)’s are conditionally independent and normally distributed, that 

is, y(ti) ∣ θ, w(ti), x, ti ∼ind Nm(f(θ1; x, t) + Aw(ti), ∑ϵ(θ3)), where θ = {θ1, θ2, θ3} (recall θ1 = 

{β, G, Q}). The joint posterior distribution, p (θ, w ∣ y, x, t, γ), is proportional to

∏
i = 1

n
Nm(y(ti) ∣ f(θ1; x, t) + Aw(ti), Σϵ(θ3))

× Npn(w ∣ 0pn, Σw(φ; t)) × p(θ ∣ γ),
(6)

where Nk (u ∣ μ, S) denotes a k-dimensional multivariate normal density function for u with 

mean μ and covariance matrix S, and γ is the set of all hyperparameters. We suppose that 

the θi’s have independent prior distributions, that is, p(θ ∣ γ) = ∏i = 1
3 p(θi ∣ γi), where γi is 

the set of hyperparameters related to the prior distribution of θi. Supplementary material 

“Identifiability.pdf” outlines identifiability conditions for the process parameters in (6).

Estimation of (6) proceeds from a Gibbs sampler with random-walk Metropolis steps 

(Gelman et al. 2003). We implement Markov chain Monte Carlo (MCMC) after integrating 

out w from the model to shrink the parameter space and achieve faster convergence for θ. 

Posterior samples of w can be obtained subsequently: for each posterior sample of θ, we 

draw a w from w ∣ θ, y ∼ Npn(mw∗ , Σw
∗ ) with mw∗ = Σw

∗ [In ⊗ (ATΣϵ
−1(θ3))(y − f(θ1; x, t))] and 

Σw
∗ = [Σw

−1(φ, t) + In ⊗ (ATΣϵ
−1(θ3)A)]−1

.

4.2 Model Assessment

We will subsequently use the deviance information criterion (DIC) and a modified predictive 

model choice criteria called the gneiting–raftery scoring rule (GRS) as model comparison 

metrics. Let Ω be the collection of parameters. The DIC (Spiegelhalter et al. 2002) is the 

sum of the posterior expected deviance D = EΩ ∣ y[ − 2 log p(data ∣ Ω)] and the effective 

number of parameters pD = D − D(Ω), where Ω denotes the posterior expectation of Ω. 

Models with smaller DICs are preferred. Here, we take Ω as the collection of μi = f(θ1; x, 

ti)’s and η(ti)’s, for i = 1, 2…,n, and ∑ϵ(θ3). These parameters constitute the “focus” of the 

DIC.

Gneiting and Raftery (2007) presented a scoring rule (GRS) based upon the predictive 

distribution of independently replicated data. To be precise, let yj
rep(ti) denote the replicate 

for yj(ti), yrep(ti) be the m × 1 vector with yj
rep(ti) as its jth element and yrep be the mn × 1 

vector obtained by stacking up the yrep(ti)’s. The posterior predictive distribution for yrep is
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p(yrep ∣ y) = ∫ p(yrep ∣ θ, w, y)p(θ, w ∣ y)dθdw

= ∫ p(yrep ∣ θ, w)p(w ∣ θ, y)p(θ ∣ y)dθdw .
(7)

Each yrep(ti) can be regarded as the “model-predicted” value for the observed y(ti); see 

Gelman et al. (2003). To draw samples from (7), we first sample θ’s from p(θ ∣ y) (using 

random-walk Metropolis steps). For each sampled θ, we draw w from p(w ∣ θ, y), one-for-

one given the simulated value of θ. Subsequently, we sample yrep from p(yrep ∣ θ, η), one-

for-one for each simulated value of θ and w. The GRS is defined as

GRS = − ∑
i = 1

n
∑

j = 1

m yj(ti) − μij
rep

σij
rep

2
− ∑

i = 1

n
∑

j = 1

m
log{(σij

rep)
2
},

where μij
rep and σij

rep are the mean and standard deviation, respectively, of yj
rep(ti) in (7). The 

GRS is easily evaluated from posterior samples. The GRS depends only on the first and 

second moments of the predictive distribution for the replicated data, and penalizes 

departure of replicated means from the corresponding observed values (lack of fit), as well 

as the uncertainty in the replicated data (often reflected by overparameterization). Models 

having higher GRS are preferred.

4.3 Misaligned Data

Section 4 considers the ideal situation where we observe all the outcomes for every ti. In 

practice, however, it is not uncommon to encounter misaligned or multivariate missing data 

in two-zone experimental settings. The means that measurements on some of the outcomes 

are missing at some timepoints as is the case with us (Section 3).

An advantage of our process-based framework is that inference with misaligned data can be 

accommodated with some minor tweaks. We elucidate with the two-zone model (m = 2) 

setting, where A is 2 × 2, w(t) = (w1(t), w2(t))T, and w1(t) and w2(t) are independent 

Gaussian processes. It helps to distinguish among three sets of timepoints. Let t1 be the set 

of timepoints that yield observations only in the near field, t2 be the time-points that yield 

observations only in the far field, and t12 be the timepoints yielding simultaneous 

measurements from both the fields. The observed data likelihood is now

∏
t ∈ t12

N2(y(t) ∣ f(θ1; x, t) + Aw(t), Σϵ(θ3))

× ∏
t ∈ t1

N1(y1(t) ∣ f1(θ1; x, t) + a1 ∗
T w(t), τ1)

× ∏
t ∈ t2

N1(y2(t) ∣ f2(θ1; x, t) + a2 ∗
T w(t), τ2),

(8)
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where al ∗
T  denotes the lth row vector of A, for l = 1, 2. The joint posterior distribution can 

then be obtained by multiplying (8) with the priors as in (6).

For a more generic setup, some further details on implementation may be useful. Let y be 

the nm × 1 vector obtained by stacking up the y(ti)’s. Suppose that k of its elements are 

observed and consequently nm – k are missing. Denote by yo and ym the observed and 

missing data, respectively. We can write yo and ym by suitably extracting elements from y. 

Therefore, there are extraction matrices, Po and Pm, such that yo = Poy and ym = Pmy. The 

matrix Po is k × nm and Pm is (mn – k) × mn. Both these matrices are short and wide and 

have full row rank.

Bayesian inference evaluates the full posterior predictive distribution ym,

p(ym ∣ yo) = ∫ p(ym ∣ θ, yo)p(θ ∣ yo)dθ . (9)

Obtaining samples from (9) is straightforward and can be performed after the posterior 

samples of θ have been drawn from p(θ ∣ yo): for each sampled θ, we draw ym from p(ym ∣ 
θ, yo). Matters are simplified because ym ∣ θ, yo ~ Nnm–k (m(θ; t), V(θ; t)), where

m(θ; t) = Pmf(θ1; x, t) + PmΣy(θ2, θ3)

× PoT(PoΣy(θ2, θ3)PoT)−1(yo − Pof(θ1; x, t));

V(θ; t) = PmΣy(θ2, θ3)PmT − PmΣy(θ2, θ3)

× PoT(PoΣy(θ2, θ3)PoT)−1PoΣy(θ2, θ3)PmT .

Here, ∑y(θ2, θ3) = ∑η(θ2; t) + In ⊗ ∑ϵ(θ3) is the nm × nm covariance matrix for y given θ. 

Crucially, the inverses in m(θ; t) and V(θ; t) are well defined because Po and Pm have full 

row rank and ∑y(θ2, θ3) is nonsingular.

5. DATA ANALYSIS

We now apply our PBBM approach to datasets simulated from two-zone experiments as well 

as the experimental data described in Section 3. The simulation studies we perform here 

demonstrate the identifiability of model parameters and the flexibility and effectiveness of 

the PBBM approach under diverse structural specifications. In particular, we compare the 

performance of different association structures using three distinct specifications for A: 

vector (V), diagonal (D), and lower triangular (LT). See Table 1. Moreover, we compare the 

PBBM with the simpler Bayesian nonlinear regression model (BNLR), which is essentially 

the PBBM without the random process (i.e., η(t) = 0).

Specifications for A depend upon the dimension of w(t) and the parameters in Cw(φ, ·, ·). 

For V, w(t) is a univariate Gaussian process (p = 1) and, therefore, φ = {ϕ1, ν1}. For D and 
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LT, w(t) is a bivariate Gaussian process (p = 2) and φ = {ϕ1, ϕ2, ν1, ν2}. Finally, 

Σϵ(θ3) = [
τ1 τ12
τ12 τ2

] accommodating correlated measurement errors.

5.1 Simulation Study

We first compare the performance of the models using synthetic two-zone datasets that were 

generated according to the PBBM and BNLR frameworks. Specifically, we simulate 100 

independent datasets from the BNLR model and from each of the three PBBM specifications 

in Table 1. Each dataset is composed of exposure concentrations (log-scale) in the two fields 

observed at 100 equally spaced timepoints between 1 and 100 min. The model parameters 

used to generate the data are presented in Table 2.

As seen in Table 2, the parameters associated with the marginal variance of y(t) (i.e., ai’s and 

τi’s) were chosen to be relatively small, which is typical in actual experimental scenarios. 

This also offers the BNLR a fairer platform to perform effectively because larger values for 

the ai’s can produce more variable concentration curves that would be more congruous to 

models with random effects. The input parameters for the two-zone model (i.e., ⊥1 = {β, Q, 

G} and x = {VN, VF}) were taken from physical considerations deemed plausible by 

industrial hygienists (e.g., Ramachandran 2005). These values simulate a workplace where 

the volume of the near field is equal to half of the volume of a sphere with radius 0.8 m, that 

is, VN = 1.1 m3. Moreover, we assume VF = 240 m3 and zero initial concentrations in both 

fields. In this scenario, the theoretical steady-state concentration at the near field (G/Q + G/β 
≈ 21.5 mg/m3) is roughly three times higher than that at the far field (G/Q = 7 mg/m3). 

(Information regarding the prior settings are available in the supplementary material 

“PriorSettings.pdf.”)

We divide each simulated dataset into a training set and a test set. The training set consists of 

exposure concentrations in both fields at 70 timepoints randomly selected between 1 and 

100 min. The testing set is composed of the exposure concentrations at the remaining 

timepoints. For each model, inference was based on 5000 posterior samples obtained from 

our MCMC algorithm after discarding the first 5000 iterations as burn-in. For random-walk 

Metropolis steps, we transformed parameters, if necessary, to have support on the real line so 

that normal proposals could be used and then transformed them back to the original scale. 

For the Gaussian process covariance functions, the substantive inference from the Matérn 

and the exponential were essentially indistinguishable. Subsequently, we present only the 

results for the Matern.

Table 3 presents the DIC and the GRS, averaged over the 100 independently generated 

datasets, for the PBBMs and BNLR. Here, the row labels represent the model generating the 

data (i.e., the “true” model), while the column labels represent the model used to fit the 

datasets. The numbers in the parenthesis are the standard errors.

Table 3 reveals that, in general, both comparison metrics suggest that the “true” model (i.e., 

the one from which the data was generated) seems to excel. A noticeable exception occurs 

when the data are generated from the BNLR. In this case, the DIC score suggests that all 

models fit the data equally well, while the GRS shows that PBBM with the LT structure 
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outperforms the others. In fact, both the DIC and GRS metrics indicate that PBBM with LT 

structure is always very competitive and usually excels irrespective of the underlying 

generating mechanism. The standard errors indicated in parenthesis show that there seem to 

be no significant differences between the DICs of the true model and the PBBM with 

structure LT. On the other hand, the PBBM models seem to have significantly lower DIC 

and GRS scores than the BNLR when the data are generated from the PBBM models. In 

summary, PBBM performs better than the BNLR, except when the data come from the 

BNLR model, in which case they show similar performance. Some additional analyses are 

available in the supplementary material “AdditionalAnalysis.pdf.”

5.2 Analysis of Misaligned Experimental Data

We now analyze the misaligned experimental data described in Section 3. We consider the 

BNLR and also the PBBM approach with structures LT and D. We omit V because its 

performance was found to be very similar to that of D. For each model, three parallel 

MCMC chains were run for 30,000 iterations. Table 4 shows the multivariate potential scale 

reduction factor (Brooks and Gelman 1998) to check MCMC convergence. Customarily, 

values less than 1.2 are deemed satisfactory. For posterior analysis, we discarded the first 

15,000 iterations of each chain and took every 30th sample, thus obtaining a final “thinned” 

MCMC sample of 2250 for each model.

Table 5 shows that the PBBM significantly outperforms the BNLR. This confirms what we 

suspected in Section 3. The assumptions underlying the deterministic physical model do not 

hold in actual workplace environments. Consequently, a statistical model that only has 

physical model and measurement error components will fit the data poorly. These facts are 

also confirmed by Figure 3(a)-3(c), which plot the means for the replicated data against the 

observed log-exposure concentrations (dots). The solid line (with slope 1) represents 

equality between the model replicated means and the observations. Figure 3(a) shows the 

miserably poor fit of the simple BNLR. Returning to Table 5, we see that between the LT 

and D, the GRS indicates that the LT performs slightly better than the D, although the DIC 

seems to suggest they are quite similar. This, too, is reaffirmed by Figure 3(a) and 3(c).

Table 6 presents the estimated posterior means, 95% credible intervals, and Monte Carlo 

standard errors (MCSE) for the main parameters of the competing models. The estimates for 

τ1 and τ2 are noticeably higher for the BNLR than under PBBMs. This is unsurprising 

because the BNLR attributes the entire variation in the data to measurement errors, while 

PBBM attributes part of the variation to the underlying latent process as well.

We also see a substantial bias in the airflow (β) estimates from the BNLR, which is largely 

attributable to the poor fit of simple nonlinear regression models. This is not entirely 

surprising as models with random effects tend to estimate “fixed” effects differently from 

models without random effects, a problem that has been investigated in linear mixed model 

contexts with findings not dissimilar to ours (see, e.g., Reich, Hodges, and Zadnik 2006; 

Hodges and Reich 2010). What is particularly disconcerting is the narrow credible interval 

for the airflow as a result of the BNLR’s inability to adequately capture variability. The 

substantive implications of the above can be serious. For example, the BNLR estimates 

suggest, very precisely, that the near field attains theoretical steady state after about 196.2 
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min, which, on the basis of the exploratory data analysis, seems to be a gross overestimation. 

Straightforward least-square analysis, often used by hygienists, also suffers from such 

biases. The PBBM approach, on the other hand, suggests this to be at around 79 min but is 

more cautious and yields much wider credible intervals, between 53.4 and 309 min, 

suggesting that airflow cannot be precisely estimated from the data. The PBBM sufficiently 

protects the hygienist against spurious exposure assessment and management. (More results 

are available in the supplementary material “AdditionalAnalysis.pdf”.)

6. DISCUSSION

We proffered a PBBM approach for predicting exposure concentrations over time in 

industrial workplaces. We believe our current application to be the first serious venture of 

Bayesian melding in the domain of industrial hygiene, a field that has a strong Bayesian 

presence in the form of subjective judgment but still relies largely upon least squares and 

straightforward Bayesian regressions (BNLR) (see, e.g., Zhang et al. 2009).

The PBBM is applicable whenever full inference on physical parameters and subsequent 

predictions are sought. We show that the PBBM delivers substantial, sometimes dramatic, 

improvements in inference than straightforward nonlinear regression. The PBBM approach 

reflects the variability much better, provides far superior fits to the data, yields better 

predictions, and, perhaps most importantly from the hygienist’s perspective, provides a 

much more realistic assessment of the uncertainties involved in the estimation of the model.

Based upon our current findings, we advocate estimating inputs to the physical model 

whenever possible. We recognize that full inference here will require solving the physical 

model, which may be infeasible in certain settings. However, a very large number of 

physical processes can be formulated as general systems of linear ODEs, whose solutions 

closely depend upon the eigenvalues of the coefficient matrix (see “ODE.pdf” in 

supplementary materials). Assigning reasonable priors to the eigenvalues will yield tractable 

solutions to such systems making the PBBM framework widely applicable. We note that 

estimation of parameters embedded within the systems of ODEs is a relevant and active area 

of research in diverse settings (see, e.g., Johnson, Pecquerie, and Nisbet 2013, and 

references therein).

The rich association structures permissible within PBBM are noteworthy. Since this appears 

after regressing on the posited physical model, these structures can be applied even if a 

posited physical model were computationally prohibitive. In such cases, a distinct and 

smoother Gaussian process on the space of inputs can be deployed as a fast interpolator or 

emulator for the physical model (e.g., Kennedy and O’Hagan 2001; Bayarri et al. 2007; 

Conti and O’Hagan 2010) while our specifications for η(t) can be used exactly as here. Also, 

this easily adapts to physical models with high-dimensional output (e.g., Higdon et al. 

2008).

A few extensions are worth noting. Clearly we have only skimmed the surface in our choice 

of physical models. The experimental design can be modified to collect measurements in 

different spatial locations at each timepoint. Space–time physical models based upon 
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diffusion principles can then be combined with spatio-temporal stochastic processes to 

create highly flexible melding frameworks. In fact, enrichments such as allowing the inputs 

to vary over space and time can be envisioned as well. Future possibilities may also include 

space–time dynamical specifications for η(t). Finally, we recognize that a drawback of the 

PBBM is the somewhat limited interpretability of the stochastic process. On the other hand, 

the intrinsic parameters of the physical model have clearer scientific meaning. There is a 

tradeoff between the physical model and the additional stochastic process. It may be 

instructive to develop a likelihood-based model directly from the physical model (e.g., by 

discretizing the ODE), and then absorbing the resulting systematic pattern into the stochastic 

process. We identify these as future directions of research on Bayesian melding.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Dynamics of the two-zone model.
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Figure 2. 
Two-zone experimental data.

Monteiro et al. Page 18

Technometrics. Author manuscript; available in PMC 2020 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Posterior predictive means for the replicated data plotted against the observed log exposure 

concentrations for the workplace data.
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Table 1.

Matrix structures for A

(a) V (b) D (c) LT

a1
a2

a1 0
0 a2

a1 0
a3 a2
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Table 4.

Multivariate potential scale reduction factor (Brooks and Gelman 1998)

BNLR D LT

1.07 1.01 1.01
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Table 5.

DIC and GRS scores for the actual workplace data

Model DIC PD D GRS

BNLR 768.56138 0.9767 767.58468 −721.9574

D −2857.18172 36.46883 −2893.65056 3819.8092

LT −2856.37636 37.21186 −2893.58822 3824.98638
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